100GTECHNICAL POSTER

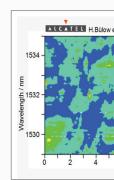
1-800-663-3936 EXFO.com

EXFO

100 Gbit/s Line Side – Dispersion and OSNR

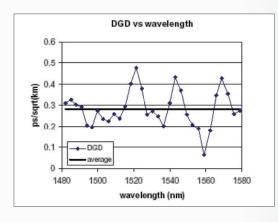
Polarization mode dispersion (PMD)

- Coherent systems promise to compensate for PMD, but do they actually deliver? - PMD compensation is performed by the digital signal processor located in the receiver - PMD changes as a function of time due to changes in temperature, mechanical stresses on the fiber (wind vibrations, poor installation), etc. Properties of an Ideal PMD Compensator

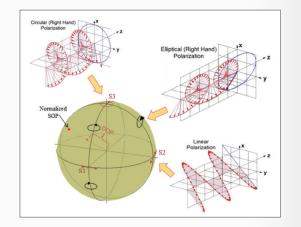

Differential group delay (DGD)

- Paper by Alcatel: measurement of DGD over 14 days.

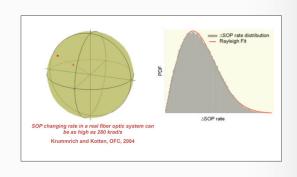
- Yellow/red areas in graph to the right: high DGD.
- Blue/green areas: low DGD. - While DGD is mostly low (blue/green), sometimes DGD reaches extreme


values (yellow/red).

- Therefore, DGD varies greatly with time and wavelength.

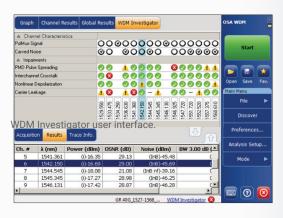


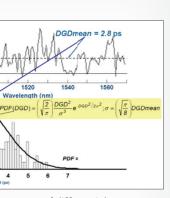
wavelengths.


PMD and DGD - DGD varies as a function of time and depends on wavelength. - DGD: specific to one wavelength. - PMD: average of DGD, for all wavelengths.

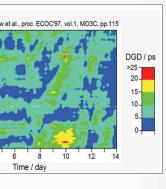
State of polarization (SOP) - SOP describes how polarization changes as it propagates in fiber. - SOP can be shown on a Poincarré sphere: each point on the sphere is a different SOP. - SOP types include elliptical, circular, linear, etc.

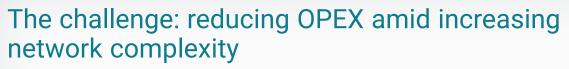
SOP changes randomly in real fibers - SOP rate of change follows a Rayleigh probability distribution.


Consequences of PMD compensation failures - Bursts of error increasing the bit error rate (BER) - Loss of tracking and long recovery time, sometimes up to 20 seconds


7 reasons why PMD compensation

- in coherent systems can fail
- 1. Fast SOP changes 2. An abrupt SOP change
- 3. Loss of SOP orthogonality
- 4. Fast PMD changes
- 5. A sudden PMD change
- 6. Large PMD values
- 7. Presence of PDL


How to reduce risk of PMD compensation failures in the fiber PMDC compensation failures can be reduced by measuring the PMD of each fiber and by not using the fibers with high PMD, because all seven risk factors for PMD compensation failure increase when fiber PMD is high.


PMD measurement on live signals (with WDM Investigator) - Identifies PMD issues on active noncoherent channels - Ideal for PMD assessment prior to an upgrade to 100G

Probability distribution curve of differential group delay (DGD) values. PMD is the average of DGD for all

Challenge

Ne

- R0/

etwork complexity	Result: new impairments
ADMs	- PMD pulse spreading
herent	- Crosstalk
rious modulation formats	- Nonlinear effects (NLE)
rious bandwidths	- Carrier leakage (CL)
ss dark fiber testing	Many sources of noise to identify and mitigate
	$Noise = N_{ASE} + N_{NLE} + N_{x-talk} + N_{CL}$

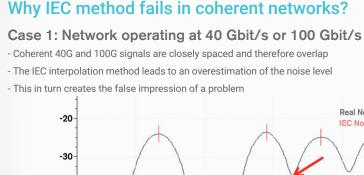
r type	10G networks	40G and 100G networks
e types	ASE	ASE, instantaneous PMD, NLE, crosstalk and CL
e sources	Optical amplifiers	Amplifiers, fiber properties, neighboring channels, filters and transmitters
bleshooting e issues	Easier	More complex, time consuming and expensive
bleshooting procedure oise issues	Check amplifier-noise figure	Check amplifiers, channel power (NLE), channel spacing (crosstalk + NLE), transmitter CL, chromatic dispersion and PMD values (NLE), and filtering (OSNR)
uired test tools	Optical spectrum analyzer	WDM Investigator

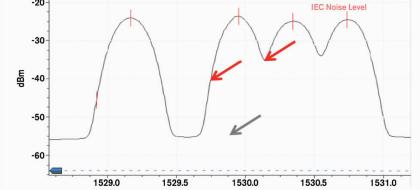
Solution: WDM Investigator

- Identifies new sources of noise, such as interchannel crosstalk, nonlinear effects and carrier leakage - Measures PMD on live signals (dark fiber is no longer a requirement for PMD measurement)

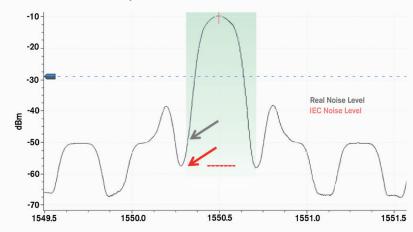

Benefits

- Enables you to diagnose your network - Helps you identify more probable causes of noise - Speeds up troubleshooting
- Reduces truck rolls
- Helps you regain control of your OPEX


Graph	Channel R	esults Global	Res	ults	WDN	4 Inv	/esti	igat	or								OSA WDM	ļ
A Chann	nel Characteris	tics																
PolMux Sig	inal		0	0	୯୦	0	0	0	0	Ś	0	0	0	0	00	2	Star	
Carved No	ise		Ś	0	Q	0	0	Ś	0	(0	0	Ś	Ś	ା	5	Star	L
🔺 Impairr	ments																	
PMD Pulse	e Spreading				<u>^</u>					- 1	X				<u> </u>			
nterchann	el Crosstalk			x						(V							
Nonlinear [Depolarization		Ø	Ō			A				0						Open Save	Fav.
Carrier Lea	kage			×	1			-	Â	(V		_				Main Menu	
						1	150	545	345	130	925	720	720	520	375		File	►
			1529.550	1533.475	1534.250 1536.630	1541.360	1542.150	1544.545	1545.345	1546.130	1546.925	1547.720	1551.720	1552.	1557.375 1557.375	1000	Discov	er
Acquisitio	on Results	Trace Info.											ો	J	⊡		Preferenc	ces
Ch. #	λ (nm)	Power (dBm	n)	OSN	IR (de	3)	N	oise	(dE	3m)		BW	3.0)O (Ĩ	Analysis S	etup
5	1541.361	(i)-16.3	35		29.3	13		(Ir	ъВ)-4	45.4	8				С		Mode	•
6	1542.150	(i)-16.6	i9		29.0	00		(Ir	ıВ)-4	45.6	9				C		Hode	
7	1544.545	(i)-18.0	8		21.0	18	(1	InB I	nf)-3	39.1	.6							
8	1545.345	(i)-17.2	27		28.9	98		(Ir	B)-4	46.2	5				C			
9	1546.131	(i)-17.4	12		28.8	37		(Ir	в)-4	46.2	8				•) • [1		
					GR 40	G 15	27-1	1568		w	DM	Inv	estic	ato	r 😡			


FTBx-5245/5255 Optical Spectrum Analyzer

- > Robust In-service Pol-Mux OSNR for 40G/100G/200G/400G (FTBx-5255)
- Industry's smallest OSA/transport solution in a single platform (FTB-4 PRO)
- > Industry's only all-in-one OSA covering all testing applications: high speed 100G+ (including In-service Pol-Mux OSNR), CWDM, O-band (1300 nm) and L-band (1600 nm range)



OSNR measurement of coherent 40G/100G signals

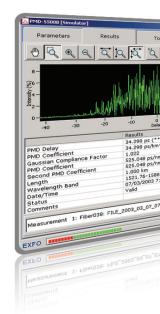
Case 2: ROADM present in the network - A ROADM contains filters that reduce interchannel noise - The traditional interpolation method leads to an underestimation of the noise - This creates a false sense of security

Why in-band OSNR fails in coherent networks?

unpolarized (two orthogonal polarizations). - WDM-Aware does not work - Polarization-nulling does not work

OSNR measurement standards - New standards have been published for 100G+ OSNR measurements

IEC 61282-12 standard - OSNR = 10log(R), $1 \int^{\lambda_2} s(\lambda)$ $R = \frac{1}{B_r} \int_{\lambda_1} \frac{1}{\rho(\lambda)} u$


- $s(\lambda)$: time-averaged signal spectral power density, not including ASE, expressed in W/nm; - $\rho(\lambda)$: ASE spectral power density, independent of polarization, expressed in W/nm; - Br: reference bandwidth expressed in nm (usually 0.1 nm)

- λ_1 to λ_2 : signal spectral range.

where for 50 GHz channel - P = integrated power (signal + noise) over the 0.4 nm channel bandwidth

- N = integrated power (noise) over 0.4 nm bandwidth - n = integrated power (noise) inside 0.2 m, then normalised to 0.1 nm

- Compliant with TIA-FOTP-124A standard
- > Patented design: test through EDFAs
- >100 Gbit/s-ready

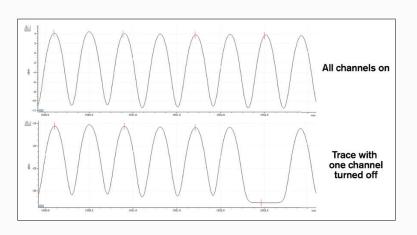
Why IEC method fails in coherent networks?

Polarization-based in-band OSNR does not work, because the signal appears

China Communications Standards Association (CCSA) YD/T 2147-2010 standard $Pol Mux OSNR = 10 \log_{10} \left(\frac{P-N}{n/2} \right)$

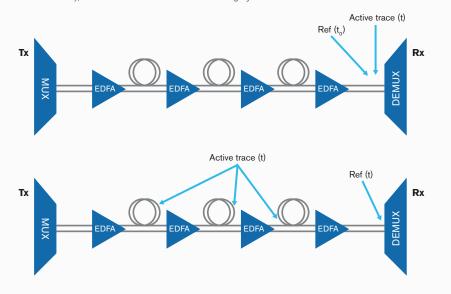
FTB-5500B PMD Analyzer

> Testing time under 5 seconds for any PMD range



EXFO's Commissioning Assistant offers the option of measuring Pol-Mux OSNR based on the IEC 61282 standard or CCSA YD/T 2147-2010 method.

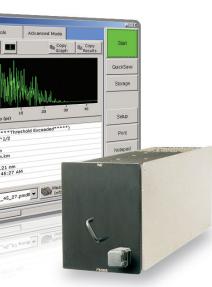
- Involves taking traces during commissioning (by turning off channels) - Requires n + 1 traces (n = number of channels)


- The commissionning assistant then automatically calculates Pol-Mux OSNR

- Saves time and money and reduces the risk of human error with respect to manual calculations with channels turned off

Solution on live networks: in-service Pol-Mux OSNR

- Unique patented method offering robust, repeatable OSNR measurements of live, coherent signals - Method consists of taking a reference and an active trace, in order to determine the OSNR of active trace - Reference and active traces can be taken at the same location, at two different times (at turn-up, t_{o} and later on at time t), OR at two different locations at roughly the same time t

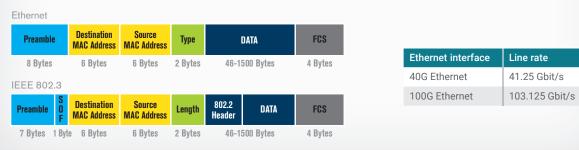


Summary of OSNR methods

Data rate	ROADM present?	OSNR method	Works on live network?
≤10 Gbit/s	no	IEC 61280-2-9	Yes
≤10 Gbit/s	yes	In-band	Yes
Noncoherent 40 Gbits/s	yes or no	In-band	Yes
Coherent 40G/100G/200G/400G (at turn-up)	yes or no	Pol Mux (com. assistant)	No
Coherent 40G/100G/200G/400G (live network)	yes or no	In-service Pol-Mux	Yes

FTB-5700 Dispersion Analyzer

- > Single-ended testing of multiple links from one location—for fewer truck rolls and reduced OPEX
- > Standards-compliant approach
- > Get right results the first time thanks to a single-button operation
- > Fully automated, smart interface



40G/100G Ethernet (IEEE 802.3ba)

Ethernet frame format and rates

41.25 Gbit/s

IEEE 802.3ba highlights

- Support a MAC data rate of 40 Gbit/s and 100 Gbit/s - Provide a BER < 10-12 at the MAC layer - Provide appropriate support for OTN

40 km over SMF 10 km over SMF 100 m over OM3 MMF 10 m over copper cable

1 m over backplane

PCS lane skew

- Skew is the difference in time it takes the signals traveling down one lane compared to the others - Each element along the data path will contribute to the overall skew (i.e., CFP, fiber etc.)

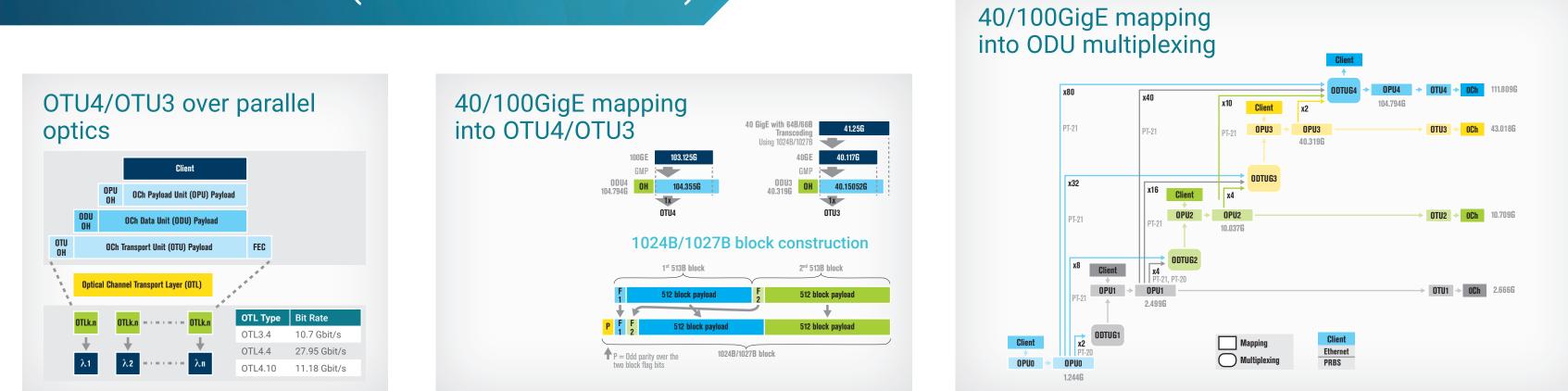
Points	Skew (ns)	for 40GBASE-R PCS Lane (UI)	Skew for 100GBASE-R PCS Lane (UI)
SP1	29	≈ 299	≈ 150
SP2	43	≈ 443	≈ 222
SP3	54	≈ 557	≈ 278
SP4	134	≈ 1382	≈ 691
SP5	145	≈ 1495	≈ 748
SP6	160	≈ 1649	≈ 824
At PCS	180	≈ 1856	≈ 928

100 Gbit/s Attachment Unit Interface
100 Gbit/s Media Independent Interface
Forward Error Correction
Media Access Control
Medium Dependent Interface
Physical Coding Sublayer
Physical Medium Attachment
Physical Medium Dependent
40 Gbit/s Attachment Unit Interface
40 Gbit/s Media Independent Interface
4 or 10

Note 1: Optional or omitted depending on PHY type.

The maximum skew and skew variation at physically instantiated interfaces is specified at skew points SP1_SP2 and SP3 for the transmit direction and SP4, SP5 and SP6 for the receive direction.

locations


the PMD:

In the transmit direction, the skew In the receive direction, the skew points are defined in the following points are defined in the following locations: - SP1 on the XLAUI/CAUI interface, - SP4 at the MDI, at the input of at the input of the PMA closest to the PMD: - SP2 on the PMD service interface,

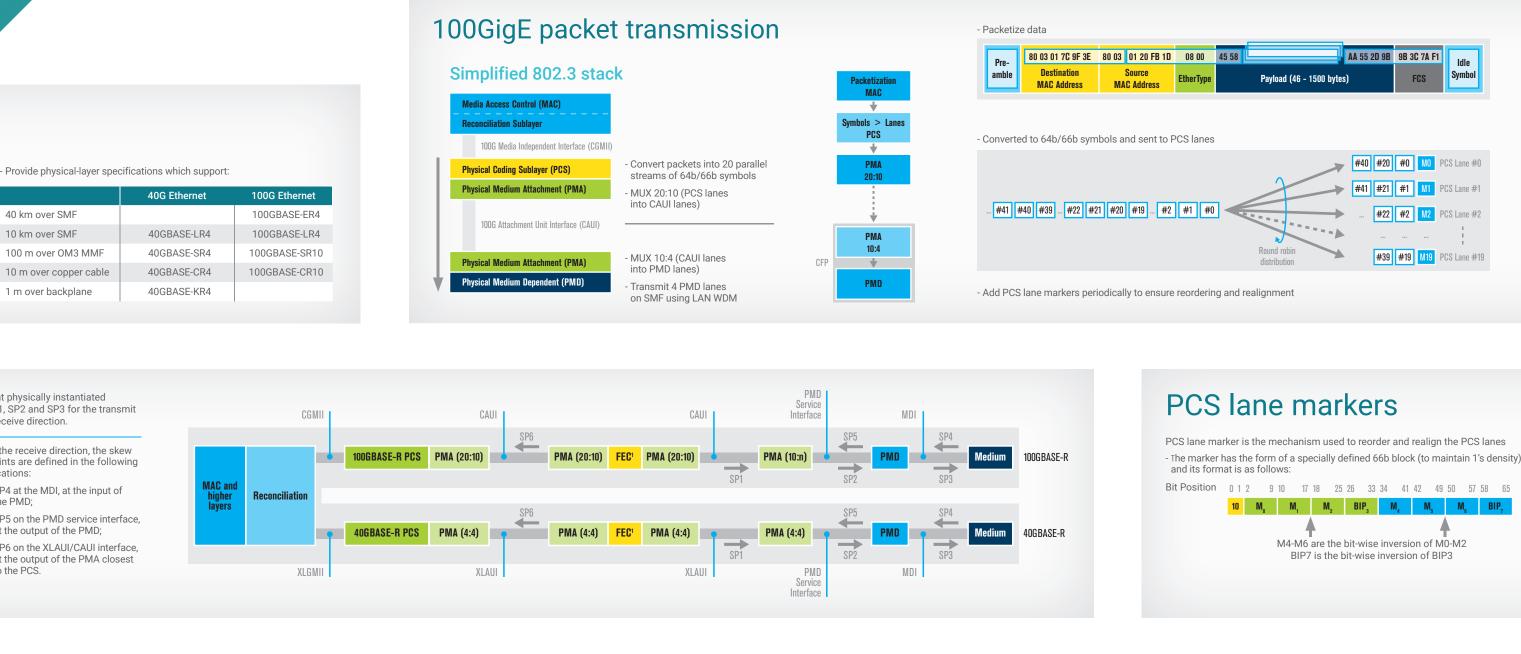
at the input of the PMD; - SP3 at the output of the PMD, at the MDI.

SP5 on the PMD service interface, at the output of the PMD; - SP6 on the XLAUI/CAUI interface, at the output of the PMA closest to the PCS.

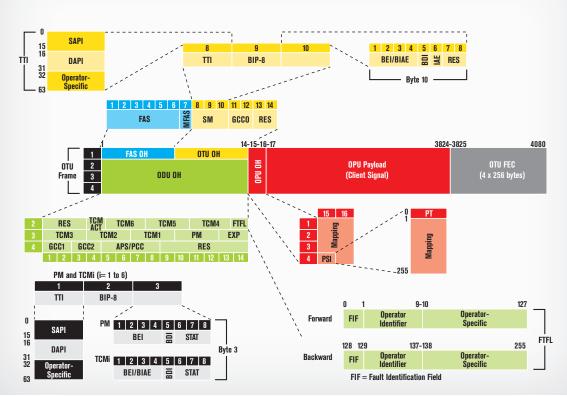
OTU4/OTU3 (ITU-T G.709)

40G/100G interfaces and pluggable transceivers

Compatibility between 40G/100G transceivers

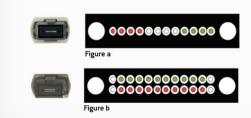

The table below depicts the compliance of different interfaces to the multiple port types used in the industry. The interfaces that are grouped within the same port-type column are interoperable, provided that the appropriate connectors are used.

					100G Base	•			
Interfaces	SR10	LR10	SR4	CLR4	CWDM4	PSM4	LR4	ER4	ER4f
CFP	•	•						•	
CFP2	•						•	•	
CFP4			•				•	•	•
CFP4									
QSFP28			•	•		•	•	•	•
				•	•	•	•	•	•
		40G Base	•	•	•		•		•
	SR4	40G Base LR4	•			•	•	•	•
QSFP28			•		•		•		


MSA optical wavelengths

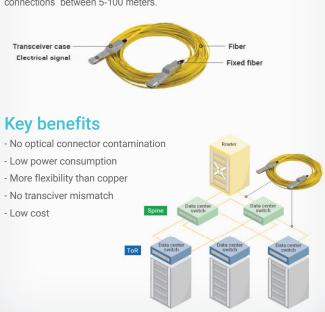
100 GigE/OTU4 Lane Center wavelengt Wavelength range 1295.56 nm 1294.53 to 1296.59 nm L₁ 1300.05 nm 1299.02 to 1301.09 nm 1304.58 nm 1303.54 to 1305.63 nm L₃ 1309.14 nm 1308.09 to 1310.19 nm 100GBASE CLR4/CWDM4 Lane Center wavelength Wavelength range L₀ 1271 nm 1264.5 to 1277.5 nm 1284.5 to 1297.5 nm L₁ 1291 nm L₂ 1311 nm 1304.5 to 1317.5 nm 1324.5 to 1337.5 nm L₃ 1331 nm

100G TECHNICAL POSTER



OTN frame structure

100GBase CFPs with MPO connector


- MPO: Multifiber-push-on or Multi-fiber-pulloff MPO-12 (see figure a) and MPO-24 (see figure b) most common MTP[®] vs. MPO
- MTP: Mechanical-transfer-pulloff *: Used interchangeably and compatible with MPO male and female connectors
- Superior style of MPO connector with many design improvements Same appearance on the outside; differences mostly on the inside

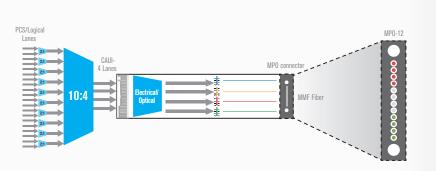
12-fiber MPO/MTP[®] (a) vs. 24-fiber MPO/MTP[®] (b) * Specific brand of MPO designed by US Conec.

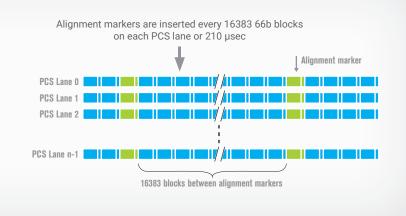
High speed active optical cables (AOC)

These cables are an alternative to optical transceivers AOC have a fixed fiber connection inside the transceiver – permanently attaching the fibers to the optics. Their main application is intended for connections between 5-100 meters

i **D**ptics

Smart test application that quickly validates transceiver and cables through a sequence of basic subtests. Supports a wide range of of optical modules and cables:


- QSFP28, QSFP+, CFPx, SFP+, SFP and AOC cables
- 1. Power monitoring
- 2. Quick check (common status/control pins 3. Temperature monitoring
- 4. Optical TX power level range test (each lane is individually tested for multilane
- devices) 5. Optical RX signal presence and level range test (each lane is individually tested for multilane devices)
- 6. Stress BERT
- 7. Frame excessive skew test (40G/100G devices only)


~	#40	#20	#0	MO	PCS Lane #0
	#41	#21	#1	M1	PCS Lane #1
\rightarrow		#22	#2	M2	PCS Lane #2
**					
		#39	#19	M19	PCS Lane #19

- 1. The PMA next to the PCS multiplexes 20 PCS lanes into 10 CAUI lanes 2. The PMA next to the PMD multiplexes 10 CAUI lanes into 4 PMD lanes
- 3. The PMD converts each PMD lane into optical NRZ and multiplexes them

4. The 4 optical lanes are transmitted over singlemode fiber

- The lane number is coded in the M1 byte field - A BIP field is used for the calculation of the BER per PCS lane
- Markers are not scrambled in order to allow the receiver to search and find the markers
- Bandwidth for the alignment markers is created by periodically deleting IPG Skew tolerance is 180 nsec maximum for both the 40G and 100G

Frame rates

OTN interface	Line rate	Corresponding service
OTU3	43.018 Gbit/s	OC-768/STM-256 40GigE
OTU3e1	44.57 Gbit/s	4 x ODU2e (uses 2.5Gig TS; total of 16)
OTU3e2	44.58 Gbit/s	4 x ODU2e (uses 1.25Gig (ODU0) TS; total of 32)
OTU4	111.81 Gbit/s	100GigE

Multiplexing capacity

Multiplexing	Number of channels
OTU4/ODU4/ODU0	80
OTU4/ODU4/ODU1	40
OTU4/ODU4/ODU2	10
OTU4/ODU4/ODU3	2

Multichannel OTN BERT

Multiplexing capabilities from OTN allow it to carry data containers inside an OTU4, if the user wants to do more exhaustive testing of the multiplexing capabilities of their network elements. Multichannel OTN enhanced with the mix mapping functionality help users start testing on a basic scenario by saturating the capacity from the pipe with the same type of data units (80 ODU0s) or will enable them to select different types of data units (ODU0/ODU1 ODU2/ODU3) in the ODU4 container, providing statistics for each channel separately for more granularity while testing 100G OTN links.

hannel 20 —	DU2 🕥	BERT - SDT	PM TTI Traces	Stop
GMP-005	OPUZ	BERT	SAPI NuLXFO ODU SAPI 20	
LOFLOM	AIS	Pattern Loss	DAPI NuLXFO ODU DAPI 20	
AIS	PLM	Bit Error		
OCI	CSF	SDT - Longest Disruption (m		Save Report Rese
LCK		0.000		Load
TIM				
BDI				Inject Laser
GMP-CRC BIP-8				
BEI				
				🍅 Setup
	Interface / OTL / C	ITU4	ODU4	Results
			30 32 35	

Our test solutions

