Understanding PMD Specifications in New Advanced Very High-Speed Networks

By André Girard, PhD, Senior Advisor CTO Office, and Francis Audet, Eng., Senior Product Line Manager

1. INTRODUCTION

With the advent of new advanced modulation formats being used to transport 40 Gbit/s and 100 Gbit/s transmission rates, a number of publications on polarization mode dispersion (PMD) and differential group delay (DGD) specifications have been produced in the industry. And due to the extensive amount of material available, it is easy to become overwhelmed and even get lost with it all. For this reason, we feel that it has become crucial to clarify PMD at high transmission rates by specifically looking into the work that has been done by the IEEE 802.3, the ITU-T, especially Study Group 15, in order to place what has been said on the subject in its proper and valid context.

2. UNDERSTANDING PMD AS A STATISTICAL PHENOMENON AND ITS RELATED CABLE SPECIFICATIONS

In the ITU-T Recommendations G.650.2 and G.691 [1,2], the PMD phenomenon, which causes pulse spreading in digital systems, is defined as the DGD between the fractions of an optical signal light pulse that are transmitted in two orthogonal polarized modes called the "principal states of polarization" (PSPs), as shown in figure 1.

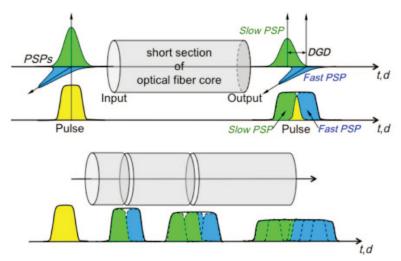
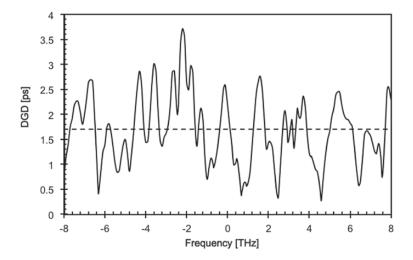


Figure 1. Example of pulse broadening from the DGD between the PSPs.

2.1 DGD_{Mean} versus DGD_{RMS}

The PMD value, typically in units of picoseconds (ps), is obtained from either of the following two approved ways:


- (a) DGD_{Mean}, defined as the linear average of the DGD values, is obtained over a wide frequency range or corresponding wavelength range;
- (b) DGD_{RMS}, defined as the RMS average of the same DGD values, is obtained over the same frequency or wavelength range as the DGD_{Mean}.

It is important to note that frequency range or corresponding wavelength range must be as wide as possible, theoretically to the infinite. With a non-infinite range, the PMD value (DGD_{Mean}) suffers an uncertainty defined as follows [1]:

PMD uncertainty [ps] =
$$\pm \frac{(2.3 \text{ PMD})^{1/2}}{4\pi \text{ (frequency range)}}$$
 (1)

If the cabled fiber is sufficiently long (in theory to infinite, practically to kilometers) and the corresponding PMD value is sufficiently high (in theory to the infinite, practically to ≥ 1 ps), the DGD values over frequency range or corresponding wavelength range will, ideally, be distributed randomly, as shown in figure 2 (i.e., random polarization mode coupling) and consequently, the probability density function (PDF) of this DGD distribution may be fit by a Maxwell equation¹.

Note: DGD_{Mean} = 1.7 ps and DGD_{RMS} = 1.85 ps Figure 2. DGD distribution over 16 THz (140.4 nm).

In this case, both the DGD_{Mean} and DGD_{RMS} are mathematically related to one another as follows [1,4]:

$$DGD_{Mean} = DGD_{RMS} \sqrt{\frac{8}{3\pi}}$$
 (2)

This simply means that the value of one can be obtained from the result of the other, but only if the DGD PDF is fit using the Maxwell curve, as seen in figure 3.

Note: The red line represents the Maxwell fit to the data Figure 3. PDF (histogram) as a function of DGD data from figure 2.

2.2 PMD₀ as a Cabled Fiber Specification

There exists a useful test that confirms the validity of the Maxwell equation fit to the DGD PDF: a one-to-one correspondence between the ideal Gaussian cross-correlation Fourier transform interferogram of the light coming out of the fiber and the ideal Maxwell equation fit to the corresponding DGD PDF. If the interferogram is not ideally Gaussian, the Maxwell equation cannot be used with confidence and fidelity to fit the DGD PDF. This means also that the relationship between the DGD_{Mean} and DGD_{RMS} is not straightforward in all cases, and measured values can vary greatly depending on the definition used by the test instrument and the complexity of the link design; figure 4 illustrates an example of such a validity test.

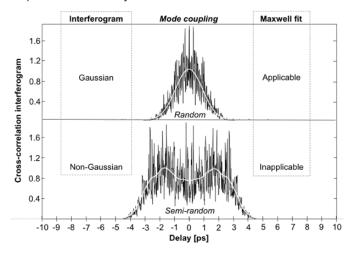


Figure 4. Interferograms in case of random (from figure 2) and semi-random mode couplings and applicability of Maxwell fit.

A PMD link design value, PMD_Q [5-10], is used as a PMD coefficient specification for cables/links. In that case, the PMD_Q (coefficient) serves as an upper bound for the PMD coefficient of a long optical cabled fiber within a defined link.

	Fiber		PMD _Q (coefficient)
I	TU-T	IEC	[ps/km ^{1/2}]
Type	Category	60793-2-50	
G.652	A and C 1	B1.1	≤ 0.5
	B and D 1	B1.3	≤ 0.20
G.653	А	B2	≤ 0.5
	В		≤ 0.20 ²
G.654	А	B1.2	≤ 0.5
	B and C		≤ 0.20
G.655	A and B	B4	≤ 0.5
	C, D and E		≤ 0.20
G.656	-	B5	≤ 0.20
G.657	А	B6	≤ 0.20
	В		TBD (Not essential)

¹ G.652.C and G.652.D fibers are also called low water-peak fibers ² Larger values can be agreed between manufacturer and user

Table 1. Recommended (standardized) values of cable maximum PMD coefficient [5-10].

In conclusion, the PMD_Q specification can only be used for cabled fibers in production, and installed links, spans and cable sections, with careful consideration for PMD measurement uncertainties, as discussed above.

2.3 DGD_{Max} as a System Specification

The maximum DGD, DGD_{Max}, is used as a PMD specification for system transmissions. DGD_{Max}, is defined as a DGD value corresponding to a PDF value taken as the probability that the transmission system will experience a DGD value larger than DGD_{Max} over a duration t as specified in table 2 [2,10] corresponding to that said probability.

Due to the statistical nature of PMD, a relationship between DGD_{Max} and DGD_{Mean} exists and can only be defined probabilistically, assuming a statistics based on the Maxwell equation (figure 3) and using a ratio S of DGD_{Mean} , as shown in table 2.

$S = \frac{DGD_{Max}}{DGD_{Mear}}$		t per year when DGD > DGD _{Max}
2.5	1.5 × 10 ⁻³	13.1 h
3.0	4.2 × 10 ⁻⁵	22 min
3.1	2.0 × 10 ⁻⁵	10.5 min
3.2	9.2 × 10 ⁻⁶	5 min
3.25	6.19 × 10 ⁻⁶	3.2 min
3.3	4.1 × 10 ⁻⁶	2.15 min
3.4	1.8 × 10 ⁻⁶	56.6 s
3.5	7.7 × 10 ⁻⁷	24 s
3.6	3.2 × 10 ⁻⁷	10.1 s
3.7	1.3 × 10 ⁻⁷	4.1 s
3.75	8.21 × 10 ⁻⁸	2.6 s
3.775	6.5 × 10 ⁻⁸	2.0 s
3.8	5.1 × 10 ⁻⁸	1.6 s
3.9	2.0 × 10 ⁻⁸	0.63 s
4.0	7.4 × 10 ⁻⁹	0.23 s

Table 2. Ratio of maximum to mean DGD and corresponding probabilities [2,10].

From a system standpoint, the average value of the random dispersion penalties due to PMD is included in the allowed path penalty. In this respect, a transmitter/receiver combination is required to tolerate an actual DGD of 0.3 (or 30%) of the bit period B with a maximum sensitivity degradation or optical signal-to-noise ratio (OSNR) penalty of approximately 1 dB (with 50% of pulse energy in each PSP). This is for low-dispersion systems. For high-dispersion systems, the penalty increases to 2 dB. Of course, if the OSNR penalty is set lower than above, the system will perform better.

System DGD_{Max} specifications can be found in a number of ITU-T Recommendations [2,11-18] for various applications and bit rates. The following provides a summary of DGD_{Max} specifications for 1 dB penalty-except when otherwise mentioned.

3. PMD SPECIFICATIONS (DGD_{MAX}) FOR VARIOUS SYSTEM APPLICATIONS

3.1 SDH/SONET

As shown in table 3, DGD_{Max} is specified up to 40 Gbit/s for SDH/SONET applications.

	olications		DGD _{Max}
STM-x	OC-x	[Gbit/s]	[ps]
4	12	0.622	480
8	24	1.244 (1.25)	240
16	48	2.488 (2.5)	120
64	192	9.953 (10)	30
256	768	39.813 (40)	7.5

¹ Some fiber categories in accordance with ITU-T Recommendations of G.652, G.653 and G.655 fibers have a PMD coefficient too high to guarantee this DGD.

Table 3. Maximum DGD specifications for SDH/SONET applications

3.2 OTN

Depending on system design, DGD_{Max} is specified up to 100 Gbit/s for OTN applications, as shown in table 4 and table 5.

OTN	Bit rate						
Applications	[Gbit/s]	NRZ	RZ	Conditions			
OTU1 + FEC	2.666	120	-	-			
OTU2 + FEC	10.709	30	-	-			
OTU3 + FEC	43.018	7.5	11.5	RZ33 (33% NRZ), 0.8xBR Rx BW, from simulation			
			9.5	RZ50 (50% NRZ), 0.8xBR Rx BW, from simulation			
			9.5	CS-RZ [T9]			

¹ Some fiber categories in accordance with ITU-T Recommendations G.652, G.653 and G.655 fibers have a PMD coefficient too high to guarantee this DGD

Table 4. Maximum DGD specifications for OTN applications [15-18].

OTN Application	ı	OTL4	.4 ¹		
Parameters	Units				
Center frequency / wavelength (operating wavelength range)	nm	231.4 THz / 1295.56 nm 230.6 THz / 1300.05 nm 229.8 THz / 1304.58 nm 229.0 THz / 1309.14 nm	(1299.02 to 1301.09) (1303.54 to 1305.63)		
Channel spacing	GHz	800			
Number of channels	-	4			
Bit rate	Gbit/s	4 x 27.953 :	= 111.810		
Fiber type	-	G.69	52		
Reach	km	10 km for NRZ / 40 km for RZ			
Maximum attenuation	dB	6.3	18		
DGD _{Max}	ps	10 (8 at 20% of bit period)	10.3 at ~26% of bit period		

 $^{^1}$ OTL4.4 (OTU4 signal running on four channels also called "lanes") = 255/227 x 24.883200 Gbit/s = 27.952493 Gbit/s per lane or 111.810 Gbit/s in total.

Table 5. Maximum DGD specifications for the OTN OTL4.4 application [18].

3.3 Ethernet

PMD is considered for Ethernet-based transport in IEEE 802.3 standardization working group. In Ethernet, PMD (DGD_{Max}) is specified up to 100 Gbit/s, as shown in table 6.

Ethernet Application		10GBASE-L	OGBASE-L 10GBASE-E 10GBASE-LX4 40GBASE-LR4				100G
Parameter	Units					BASE-LR4	BASE-ER4
Signaling rate	Gbit/s	9.95328 (LW) 10.3125 (LR)	9.95328 (EW) 10.3125 (ER)	4 x 3.125	4 x 10.3125 (41.25 Gbit/s)		5.78125 25 Gbit/s)
Channel spacing	-	-	-	CWDM (13.4 nm)	CWDM (20 nm)	DWDM	(800 GHz)
Wavelength range Center wavelength (wavelength range) Center frequency (wavelength range)	nm or THz	1260 to 1355	1530 to 1565	1318.0 to 1331.4	1271 nm (1264.5 to 1277.5) 1291 nm (1284.5 to 1297.5) 1310 nm (1304.5 to 1317.5) 1331 nm (1324.5 to 1337.5)	230.6 THz (12 229.8 THz (13	94.53 to 1296.59) 99.02 to 1301.09) 03.54 to 1305.63) 08.09 to 1310.19)
Fiber type	-				G.652		
Reach	km	10	40 1,2	10	10	10	40 ^{1,2}
DGD _{Max}	ps	10	19 PDF = 1.3·10 ⁻⁷	-	10	8	10.3

¹ Links longer than 30 km for the same link power budget are considered as being engineered links; attenuation for such links needs to be less than the worst case specified for B1.1, B1.3 or B6A single-mode fiber ² With DGD_{Max} / DGD_{Mean} = 3.75 (2.6 s/y), the link PMD coefficient is equal to 0.8 ps/√km

Table 6. Maximum DGD specifications for Ethernet applications [21, 22].

4.PMD SPECIFICATIONS (DGD $_{\text{Max}}$) FOR VERY HIGH BIT RATE ADVANCED MODULATION FORMAT SYSTEM APPLICATIONS

4.1. NRZ and RZ

Many proposals have been made over the years for PMD of very high-speed transmission systems using advanced modulation formats. Examples are provided in tables 7 to 10.

Modulation form		NR	Z		50% RZ			
Parameters	Units	NRZ OBD/PSBT DPSK DQPSK				DPSK	DQPSK	OPFDM-DQPSK
Bit rates	Gbit/s	43.018						
OSNR penalty	dB				1			
BER	-	10 ⁻⁴						
DGD _{Max}	ps	8.3 6.2 8.7 16.8 9.7 20 30.7						

Table 7. Maximum DGD for various modulation format applications [19].

4.2. OTN

Appli		40G / OTU3+ FEC									
Parameters	Units										
Operating wavelength range	nm		1530-1565								
Fiber type	-				G.6	352 and	d G.655				
Modulation format	-	ODB/PSBT	DDB/PSBT NRZ- NRZ-p-DPSK P- RZ-RZ-DQPSK OPFDM-RZ- RZ-AMI DP-QPSK DPSK G6 GHz FSR DPSK QPSI (coherent) DQPSK (coherent)								
Bit rate	Gbit/s	43.018 2 x 21.509 2 x 21.509 43.018 4 x 10.7545									
DGD _{Max} (1-dB OSNR penalty)	ps	5.5/7	5.5/7 8 7 6 9 18/20 20 9.5					75			

Table 8. Maximum DGD for various modulation format applications [19].

Application	100G / OTU4 (1)										
Parameters	Units		188878184(1)								
Operating wavelength range	nm		1530-1565 (presumed)								
Fiber type	-		G.652 and G.655 (presumed)								
Modulation format	-	NR.	Z			NRZ-DQPS	K			ODB/PSBT	
Bit rate	Gbit/s	111.810 4 x 27.953		43.018		111.810 4 x 27.953	130 2 x 65	130 3 x 43.018	43.018	111.810 4 x 27.953	130 3 x 43.018
DGD _{Max} (1-dB OSNR penalty, BER = 1 x 10 ⁻⁴)	ps	2.9	2.5	16	5.8	6.1	5	5.3	7	2.7	2.3

Table 9. Maximum DGD for various modulation format applications [19].

Application	Application 100							100G / OTU4 (2)				
Parameters	Units							\- /				
Operating wavelength range	nm		1530-1565 (presumed)									
Fiber type	-		G.652 and G.655 (presumed) G.652 + DCF (80 km + 12.8 km)									
Modulation format	-		RZ-DQPS	SK	DP-C	PSK	DPSK DQPSK			PSK	DP-DQPSK	
Bit rate	Gbit/s	43.018		130 3 x 43.018	111.810 4 x 27.953	130 3 x 43.018						
DGD _{Max} (1-dB	ps	19 7.3 6.3 27 23				23	9	7.7	18	15.4	36	30.8
OSNR penalty, BER = 1 x 10 ⁻⁴)								Ratio D	GD to symb	ol duration =	10%	

Table 10. Maximum DGD for various modulation format applications [19].

4.3. Summary

As illustrated in figure 5, modulation formats, such as DQPSK (especially when used in a dual- or multiplexed-polarization schemes), offer the best potential for transmissions at very high speeds. For instance, at an eventual 400 Gbit/s, $DGD_{Max} = 7$ ps could be expected with RZ DP-QPSK.



Figure 5. Summary of maximum DGD values for various lines codes, modulation formats as a function of bit rate.

5. CONCLUSIONS

In conclusion, only DGD_{Max} should be considered as a transmission system for PMD specification, while PMD_Q is for fibers in cables or links. Up to now, two PMD_Q specifications are available, 0.5 and 0.20 ps/ \sqrt{km} and a number of DGD_{Max} specifications for SDH up to STM-256/OC-768, for OTN up to OTU4 and OTL4.4 (100 Gbit/s) and Ethernet (up to 100 Gbit/s).

6. BIBLIOGRAPHY

- [1] ITU-T Recommendation G.650.2 (07/2007), Definitions and test methods for statistical and non-linear related attributes of single-mode fiber and cable, refers to definitions and test methods suitable mainly for factory measurements of the statistical and non-linear attributes of the single-mode optical fibers and cables described in the optical fiber and cable specification Recommendations (G.652 to G.657). ITU-T Recommendation G.650.3 (03/2008), Test methods for installed single-mode optical fibre cable links, refers to definitions and test methods suitable mainly for field measurements.
- [2] ITU-T Recommendation G.691 (03/2006), Optical interfaces for single channel STM-64 and other SDH systems with optical amplifiers
- [3] Gisin, N., Gisin, B., Von der Weid, J.P. and Passy, R., How Accurately Can One Measure a Statistical Quantity Like Polarization-Mode Dispersion?, IEEE Photonics Technology Letters, Vol. 8, No. 12, 1671-1673, Dec. 1996
- [4] IEC TR 61282-9 Ed. 1.0 (07/2006), Fiber optic communication system design guides Part 9: Guidance on polarization mode dispersion measurements and theory
- [5] ITU-T Recommendation G.652 (11/2009), Characteristics of a single-mode optical fiber and cable
- [6] ITU-T Recommendation G.653 (07/2010), Characteristics of a dispersion-shifted single-mode optical fiber and cable
- [7] ITU-T Recommendation G.654 (07/2010), Characteristics of a cut-off shifted single-mode optical fiber and cable
- [8] ITU-T Recommendation G.655 (11/2009), Characteristics of a non-zero dispersion-shifted single mode optical fiber and cable
- [9] ITU-T Recommendation G.656 (07/2010), Characteristics of a fiber and cable with non zero dispersion for wideband optical transport
- [10] ITU-T Recommendation G.657 (11/2009), Characteristics of a bending loss insensitive single mode optical fiber and cable for the access network
- [11] ITU-T Recommendation G.696.1 (07/2010), Longitudinally compatible intra-domain DWDM applications
- [12] Hanson T, "Polarization mode dispersion and related topics", IEEE P802.3ae, Equalization Ad Hoc, Oct. 2000.
- [13] ITU-T Recommendation G.692 (10/1998), Optical interfaces for multichannel with optical amplifiers
- [14] ITU-T Recommendation G.693 (11/2009), Optical interfaces for intra-office systems
- [15] ITU-T Recommendation G.695 (10/2010), Optical interfaces coarse wavelength division multiplexing applications
- [16] ITU-T Recommendation G.698.1 (11/2009), Multichannel DWDM applications with single channel optical interfaces
- [17] ITU-T Recommendation G.698.2 (11/2009), Amplified multichannel dense wavelength division multiplexing applications with single channel optical interfaces
- [18] ITU-T Recommendation G.959.1 (11/2009), Optical transport network physical layer interfaces
- [19] ITU-T Supplement G.Sup39 (11/2010), Optical system design and engineering considerations
- [20] Abou-Shaban, M. and Vilain, J.M., 100G Networks: Its Evolution-Its Challenges, EXFO application note 249, Feb. 2011
- [21] IEEE P802.3baTM/D3.1, Draft Standard for Information technology Telecommunications and information exchange between systems Local and metropolitan area networks Specific requirements, Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, Amendment: Media Access Control Parameters, Physical Layers and Management Parameters for 40 Gb/s and 100 Gb/s Operation, Feb. 2010
- [22] IEEE Std 802.3ae IEEE Standard for Information technology —Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, Amendment: Media Access Control (MAC) Parameters, Physical Layers, and Management Parameters for 10 Gb/s Operation (2002)
- [23] ITU-T Recommendation G.709/Y.1331 (2009-12), Interface for the optical transport network (OTN)

7. LIST OF ACRONYMS AND ABBREVIATIONS

AMI Alternate-mark-inversion

BER Bit error rate
BR Bit rate
BW Bandwidth

CS-RZ Carrier-suppressed RZ

CWDM Coarse wavelength division multiplexing

d Distance

DGD Differential group delay

 DGD_{Mean} Mean value of DGD distribution as a function of frequency or wavelength DGD_{RMS} RMS value of DGD distribution as a function of frequency or wavelength

DGD_{Max} DGD value corresponding to a PDF value taken as the probability that the transmission system will experience a DGD

value larger than DGD_{Max} over a duration t

DP- Dual polarization

DPSK Differential phase shift keying

DQPSK Differential quadruple phase shift keying
DWDM Dense wavelength division multiplexing

FEC Forward error correction

IEC International Electro-technical Commission
IEEE Institute of Electrical and Electronic Engineers

ITU-T International Telecommunication Union – Telecommunications standardization sector

M Number of cable sections used to define PMD_O

NRZ Non-return to zero
OBD Optical duo-binary
OC Optical carrier

OPFDM Orthogonal polarized frequency division multiplexing

OSNR Optical signal-to-noise ratio
OTL Optical channel transport lane
OTN Optical transport network
OTU Optical transport unit
PDF Probability density function

P-DPSK Partial DPSK

PMD Polarization mode dispersion

PMDQ Statistical upper bound defined in terms of a probability level, Q, that a PMD coefficient value exceeds PMDQ of a long

optical cabled fiber within a defined concatenated link of M cable sections

PSBT Phase shaped binary transmission
PSP Principal state of polarization

Q Probability level that a concatenated PMD coefficient value exceeds PMDQ

RZ Return to zero

S Ratio of DGDMax to DGDMean
SDH Synchronous digital hierarchy
SONET Synchronous optical network
STM Synchronous transport module

t Time

8. ADDITIONAL USEFUL INFORMATION

SDH synchronous transfer mode level		Line rate [Gbit/s]	Typical name
STM-1	OC-3	0.15552	155 Mbit/s
STM-4	OC-12	0.62208	622 Mbit/s
STM-16	OC-48	2.48832	2.5 Gbit/s
STM-64	OC-192	9.95328	10 Gbit/s
STM-256	OC-768	39.81312	40 Gbit/s

OTN ODU line code [23]	Line rate [Gbit/s]
ODU0	1.244
ODU1	2.499
ODU2	10.037
ODU3	40.319
ODU4	104.795

OTN OTU line code [23]	Line rate [Gbit/s]		
OTU1	2.666		
OTU2	10.709		
OTU3	43.018		
OTU4	111.810		

EXFO Corporate Headquarters > 400 Godin Avenue, Quebec City (Quebec) G1M 2K2 CANADA | Tel.: +1 418 683-0211 | Fax: +1 418 683-2170 | info@EXFO.com

			Toll-free: +1 800 663-3936 (USA and Canada) www.EXFO.com	
EXFO America	3400 Waterview Parkway, Suite 100	Richardson, TX 75080 USA	Tel.: +1 972 761-9271	Fax: +1 972 761-9067
EXFO Asia	100 Beach Road, #22-01/03 Shaw Tower	SINGAPORE 189702	Tel.: +65 6333 8241	Fax: +65 6333 8242
EXFO China	36 North, 3 rd Ring Road East, Dongcheng District Room 1207, Tower C, Global Trade Center	Beijing 100013 P. R. CHINA	Tel.: + 86 10 5825 7755	Fax: +86 10 5825 7722
EXFO Europe	Omega Enterprise Park, Electron Way	Chandlers Ford, Hampshire S053 4SE ENGLAND	Tel.: +44 23 8024 6810	Fax: +44 23 8024 6801
EXFO NetHawk	Elektroniikkatie 2	FI-90590 Oulu, FINLAND	Tel.: +358 (0)403 010 300	Fax: +358 (0)8 564 5203
EXFO Service Assurance	270 Billerica Road	Chelmsford, MA 01824 USA	Tel.: +1 978 367-5600	Fax: +1 978 367-5700

EXFO is certified ISO 9001 and attests to the quality of these products. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. EXFO has made every effort to ensure that the information contained in this specification sheet is accurate. However, we accept no responsibility for any errors or omissions, and we reserve the right to modify design, characteristics and products at any time without obligation. Units of measurement in this document conform to SI standards and practices. In addition, all of EXFO's manufactured products are compliant with the European Union's WEEE directive. For more information, please visit www.EXFO.com/recycle. Contact EXFO for prices and availability or to obtain the phone number of your local EXFO distributor.

For the most recent version of this spec sheet, please go to the EXFO website at www.EXFO.com/specs

In case of discrepancy, the Web version takes precedence over any printed literature.

